Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
2.
Am J Clin Pathol ; 158(3): 401-408, 2022 09 02.
Article in English | MEDLINE | ID: covidwho-2287109

ABSTRACT

OBJECTIVES: In the fall of 2020, US medical centers were running out of rapid coronavirus disease 2019 (COVID-19) tests. The aim of this study is to evaluate the impact of an intervention to eliminate rapid test misutilization and to quantify the effect of the countermeasures to control rapid test ordering using a test utilization dashboard. METHODS: Interventions were made to preserve a severely limited supply of rapid diagnostic tests based on real-time analysis of a COVID-19 test utilization dashboard. This study is a retrospective observational study evaluating pre- and postintervention rates of appropriate rapid test use, reporting times, and cost/savings of resources used. RESULTS: This study included 14,462 severe acute respiratory syndrome coronavirus 2 reverse transcriptase polymerase chain reaction tests ordered during the study period. After the intervention, there was a 27.3% decrease in nonconforming rapid tests. Rapid test reporting time from laboratory receipt decreased by 1.47 hours. The number of days of rapid test inventory on hand increased by 39 days. CONCLUSIONS: Performing diagnostic test stewardship, informed by real-time review of a test utilization dashboard, was associated with significantly improved appropriate utilization of rapid diagnostic COVID-19 tests, improved reporting times, implied cost savings, and improved reagent inventory on hand, which facilitated the management of scarce resources during a pandemic.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Humans , Indicators and Reagents , Pandemics , SARS-CoV-2
3.
Transfus Med ; 2022 May 28.
Article in English | MEDLINE | ID: covidwho-2253563

ABSTRACT

Faced with an evolving pandemic and a lack of clarity of the role of convalescent plasma for patients with COVID-19, the CONCOR-1 trial was launched. In 14 months the trial was designed, launched, completed, and submitted for publication. In total, 72 sites in three countries served by four blood suppliers randomised 940 patients. Many enablers facilitated the trial including: three study principal investigators to distribute the trial workload, diverse steering committee members, an international data safety monitoring committee, multiple statisticians and methodologists, virtual meeting platforms, REDCap data platform, pausing of non-COVID-19 trials, rapid approval pathways for institutional review boards and regulators, centralised institutional review boards in many locations, restriction of use of convalescent plasma to trial participants and the incredible dedication by research personnel. In future pandemics, we need to be prepared for rapid launch of trials. The protocols, consent forms, data collection tools, and procedures need to be in draft form ready for use at all times. We were well-prepared for blood shortages but should have anticipated the need to conduct trials with convalescent plasma. In this short article, we detail our lessons learned to inform researchers faced with the next pandemic pathogen.

4.
Ann Clin Lab Sci ; 52(6): 871-879, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2168913

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses are contagious respiratory pathogens with similar symptoms but require different treatment and management strategies. This study investigated the differences in laboratory test result profiles between SARS-CoV-2 and influenza infected patients upon presentation to emergency department (ED). METHODS: Laboratory test results and demographic information from 723 influenza positive (2018/1/1 to 2020/3/15) and 1,281 SARS-CoV-2 positive (2020/3/11 to 2020/6/30) ED patients were retrospectively analyzed. The dataset was randomly divided into a training/validation set (2/3) and a test set (1/3) with the same SARS-CoV-2/influenza ratio. Four machine learning models in differentiating the laboratory profiles of RT-PCR confirmed SARS-CoV-2 and influenza positive patients were evaluated. The Shapley Additive Explanations technique was employed to visualize the impact of laboratory tests on the overall differentiation. Furthermore, the model performance was also evaluated in a new test dataset including 519 SARS-CoV-2 ED patients (2020/12/1 to 2021/2/28) and the previous influenza positive patients (2018/1/1 to 2020/3/15). RESULTS: A laboratory test result profile consisting of 15 blood tests, together with patient age, gender, and race can discriminate the two types of viral infections using a random forest (RF) model. The RF model achieved an area under the receiver operating characteristic curve (AUC) of 0.90 in the test set. Among the profile of 15 laboratory tests, the serum total calcium level exhibited the greatest contribution to the overall differentiation. Furthermore, the model achieved an AUC of 0.81 in a new test set. CONCLUSION: We developed a laboratory tests-based RF model differentiating SARS-CoV-2 from influenza, which may be useful for the preparedness of overlapping COVID-19 resurgence and future seasonal influenza.


Subject(s)
COVID-19 , Influenza, Human , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Influenza, Human/diagnosis , Retrospective Studies , Clinical Laboratory Techniques/methods
5.
Health data science ; 2021, 2021.
Article in English | EuropePMC | ID: covidwho-2112028

ABSTRACT

Background New York City (NYC) experienced an initial surge and gradual decline in the number of SARS-CoV-2-confirmed cases in 2020. A change in the pattern of laboratory test results in COVID-19 patients over this time has not been reported or correlated with patient outcome. Methods We performed a retrospective study of routine laboratory and SARS-CoV-2 RT-PCR test results from 5,785 patients evaluated in a NYC hospital emergency department from March to June employing machine learning analysis. Results A COVID-19 high-risk laboratory test result profile (COVID19-HRP), consisting of 21 routine blood tests, was identified to characterize the SARS-CoV-2 patients. Approximately half of the SARS-CoV-2 positive patients had the distinct COVID19-HRP that separated them from SARS-CoV-2 negative patients. SARS-CoV-2 patients with the COVID19-HRP had higher SARS-CoV-2 viral loads, determined by cycle threshold values from the RT-PCR, and poorer clinical outcome compared to other positive patients without the COVID12-HRP. Furthermore, the percentage of SARS-CoV-2 patients with the COVID19-HRP has significantly decreased from March/April to May/June. Notably, viral load in the SARS-CoV-2 patients declined, and their laboratory profile became less distinguishable from SARS-CoV-2 negative patients in the later phase. Conclusions Our longitudinal analysis illustrates the temporal change of laboratory test result profile in SARS-CoV-2 patients and the COVID-19 evolvement in a US epicenter. This analysis could become an important tool in COVID-19 population disease severity tracking and prediction. In addition, this analysis may play an important role in prioritizing high-risk patients, assisting in patient triaging and optimizing the usage of resources.

8.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1650891

ABSTRACT

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Subject(s)
COVID-19/genetics , COVID-19/pathology , Lung/pathology , SARS-CoV-2 , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Cohort Studies , Female , Gene Expression Regulation , Humans , Influenza, Human/genetics , Influenza, Human/pathology , Influenza, Human/virology , Lung/metabolism , Male , Middle Aged , Orthomyxoviridae , RNA-Seq/methods , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/pathology , Viral Load
9.
Nat Med ; 27(11): 2012-2024, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526091

ABSTRACT

The efficacy of convalescent plasma for coronavirus disease 2019 (COVID-19) is unclear. Although most randomized controlled trials have shown negative results, uncontrolled studies have suggested that the antibody content could influence patient outcomes. We conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset ( NCT04348656 ). Patients were allocated 2:1 to 500 ml of convalescent plasma or standard of care. The composite primary outcome was intubation or death by 30 d. Exploratory analyses of the effect of convalescent plasma antibodies on the primary outcome was assessed by logistic regression. The trial was terminated at 78% of planned enrollment after meeting stopping criteria for futility. In total, 940 patients were randomized, and 921 patients were included in the intention-to-treat analysis. Intubation or death occurred in 199/614 (32.4%) patients in the convalescent plasma arm and 86/307 (28.0%) patients in the standard of care arm-relative risk (RR) = 1.16 (95% confidence interval (CI) 0.94-1.43, P = 0.18). Patients in the convalescent plasma arm had more serious adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02-1.57, P = 0.034). The antibody content significantly modulated the therapeutic effect of convalescent plasma. In multivariate analysis, each standardized log increase in neutralization or antibody-dependent cellular cytotoxicity independently reduced the potential harmful effect of plasma (odds ratio (OR) = 0.74, 95% CI 0.57-0.95 and OR = 0.66, 95% CI 0.50-0.87, respectively), whereas IgG against the full transmembrane spike protein increased it (OR = 1.53, 95% CI 1.14-2.05). Convalescent plasma did not reduce the risk of intubation or death at 30 d in hospitalized patients with COVID-19. Transfusion of convalescent plasma with unfavorable antibody profiles could be associated with worse clinical outcomes compared to standard care.


Subject(s)
COVID-19/therapy , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19/epidemiology , Canada/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Passive , Intention to Treat Analysis , Male , Middle Aged , SARS-CoV-2/immunology , Treatment Outcome , United States/epidemiology , COVID-19 Serotherapy
10.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: covidwho-1484165

ABSTRACT

Longitudinal studies are needed to evaluate the SARS-CoV-2 mRNA vaccine antibody response under real-world conditions. This longitudinal study investigated the quantity and quality of SARS-CoV-2 antibody response in 846 specimens from 350 patients, comparing BNT162b2-vaccinated individuals (19 previously diagnosed with COVID-19, termed RecoVax; and 49 never diagnosed, termed NaiveVax) with 122 hospitalized unvaccinated (HospNoVax) and 160 outpatient unvaccinated (OutPtNoVax) COVID-19 patients. NaiveVax experienced delay in generating SARS-CoV-2 total antibodies (TAb) and surrogate neutralizing antibodies (SNAb) after the first vaccine dose (D1) but rapid increase in antibody levels after the second dose (D2). However, these never reached RecoVax's robust levels. In fact, NaiveVax TAb and SNAb levels decreased 4 weeks after D2. For the most part, RecoVax TAb persisted, after reaching maximal levels 2 weeks after D2, but SNAb decreased significantly about 6 months after D1. Although NaiveVax avidity lagged behind that of RecoVax for most of the follow-up periods, NaiveVax did reach similar avidity by about 6 months after D1. These data suggest that 1 vaccine dose elicits maximal antibody response in RecoVax and may be sufficient. Also, despite decreasing levels in TAb and SNAb over time, long-term avidity may be a measure worth evaluating and possibly correlating to vaccine efficacy.


Subject(s)
Antibody Formation , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2 , Vaccination
11.
Surgery ; 171(4): 1092-1099, 2022 04.
Article in English | MEDLINE | ID: covidwho-1401876

ABSTRACT

OBJECTIVES: We evaluated rotational thromboelastometry tracings in 44 critically ill coronavirus disease 2019 patients, to determine whether there is a viscoelastic fingerprint and to test the hypothesis that the diagnosis and prediction of venous thromboembolism would be enhanced by the addition of rotational thromboelastometry testing. RESULTS: Rotational thromboelastometry values reflected an increase in clot strength for the EXTEM, INTEM, and FIBTEM assays beyond the reference range. No hyperfibrinolysis was noted. Fibrinolysis shutdown was present but did not correlate with thrombosis; 32% (14/44) of patients experienced a thrombotic episode. For every 1 mm increase of FIBTEM maximum clot formation, the odds of developing thrombosis increased 20% (95% confidence interval, 0-40%, P = .043), whereas for every 1,000 ng/mL increase in D-dimer, the odds of thrombosis increased by 70% (95% confidence interval, 20%-150%, P = .004), after adjustment for age and sex (AUC 0.96, 95% confidence interval, 0.90-1.00). There was a slight but significant improvement in model performance after adding FIBTEM maximum clot formation and EXTEM clot formation time to D-dimer in a multivariable model (P = .04). CONCLUSIONS: D-dimer concentrations were more predictive of thrombosis in our patient population than any other parameter. Rotational thromboelastometry confirmed the hypercoagulable state of coronavirus disease 2019 intensive care unit patients. FIBTEM maximum clot formation and EXTEM clot formation time increased the predictability for thrombosis compared with only using D-dimer. Rotational thromboelastometry analysis is most useful in augmenting the information provided by the D-dimer concentration for venous thromboembolism risk assessment when the D-dimer concentration is between 1,625 and 6,900 ng/dL, but the enhancement is modest. Fibrinolysis shutdown did not correlate with thrombosis.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Thrombophilia , Thrombosis , COVID-19/complications , COVID-19/diagnosis , Humans , Thrombelastography , Thrombophilia/diagnosis , Thrombophilia/etiology , Thrombosis/diagnosis , Thrombosis/etiology
12.
Pathog Immun ; 6(1): 116-134, 2021.
Article in English | MEDLINE | ID: covidwho-1389907

ABSTRACT

The approved Pfizer and Moderna mRNA vaccines are well known to induce serum antibody responses to the SARS-CoV-2 Spike (S)-protein. However, their abilities to elicit mucosal immune responses have not been reported. Saliva antibodies represent mucosal responses that may be relevant to how mRNA vaccines prevent oral and nasal SARS-CoV-2 transmission. Here, we describe the outcome of a cross-sectional study on a healthcare worker cohort (WELCOME-NYPH), in which we assessed whether IgM, IgG, and IgA antibodies to the S-protein and its receptor-binding domain (RBD) were present in serum and saliva samples. Anti-S-protein IgG was detected in 14/31 and 66/66 of saliva samples from uninfected participants after vaccine doses-1 and -2, respectively. IgA antibodies to the S-protein were present in 40/66 saliva samples after dose 2. Anti-S-protein IgG was present in every serum sample from recipients of 2 vaccine doses. Vaccine-induced antibodies against the RBD were also frequently present in saliva and sera. These findings may help our understanding of whether and how vaccines may impede SARS-CoV-2 transmission, including to oral cavity target cells.

13.
Microbiol Spectr ; 9(1): e0008321, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1352538

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has taken an unprecedented toll on clinical diagnostic testing, and the need for PCR-based testing remains to be met. Nucleic acid amplification testing (NAAT) is the recommended method for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to the inherent advantages in sensitivity and specificity. In this study, we evaluated the performance of the MatMaCorp COVID-19 2SF test, a reverse transcription-PCR (RT-PCR) assay for the qualitative detection of SARS-CoV-2 from nasopharyngeal (NP) swabs, run on the Solas 8 instrument (MatMaCorp, Lincoln, NE). The Solas 8 device is portable, and the kit is a lab-in-a-box design which provides reagents in a shelf-stable lyophilized powder format. A total of 78 remnant clinical specimens were used to evaluate the COVID-19 2SF test. Sixty-two clinical specimens originally tested by the Xpert Xpress SARS-CoV-2 assay (Cepheid, Inc., Sunnyvale, CA) were used to evaluate the clinical accuracy of the COVID-19 2SF test. The negative percent agreement (NPA) was 100% (95% confidence interval [CI], 83.9% to 100%), and the positive percent agreement (PPA) was 85.4% (95% CI, 70.8% to 94.4%). Sixteen remnant specimens positive for other common respiratory pathogens (FilmArray respiratory panel 2.0; BioFire, Salt Lake City, UT) were assayed on the Solas 8 device to evaluate specificity. No cross-reactivity with other respiratory pathogens was identified. The unique lab-in-a-box design and shelf-stable reagents of the MatMaCorp COVID-19 2SF test offer laboratories a rapid option for a diagnostic NAAT for SARS-CoV-2 that can help meet diagnostic needs. IMPORTANCE The demand for molecular testing for COVID-19 remains to be met. This study of the MatMaCorp Solas 8 device and COVID-19 test provides the first evaluation of this platform.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Diagnostic Tests, Routine , Humans , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Specimen Handling
14.
Trials ; 22(1): 323, 2021 May 04.
Article in English | MEDLINE | ID: covidwho-1273249

ABSTRACT

BACKGROUND: Convalescent plasma has been used for numerous viral diseases including influenza, severe acute respiratory syndrome, Middle East respiratory syndrome and Ebola virus; however, evidence to support its use is weak. SARS-CoV-2 is a novel coronavirus responsible for the 2019 global pandemic of COVID-19 community acquired pneumonia. We have undertaken a randomized controlled trial to assess the efficacy and safety of COVID-19 convalescent plasma (CCP) in patients with SARS-CoV-2 infection. METHODS: CONCOR-1 is an open-label, multicentre, randomized trial. Inclusion criteria include the following: patients > 16 years, admitted to hospital with COVID-19 infection, receiving supplemental oxygen for respiratory complications of COVID-19, and availability of blood group compatible CCP. Exclusion criteria are : onset of respiratory symptoms more than 12 days prior to randomization, intubated or imminent plan for intubation, and previous severe reactions to plasma. Consenting patients are randomized 2:1 to receive either approximately 500 mL of CCP or standard of care. CCP is collected from donors who have recovered from COVID-19 and who have detectable anti-SARS-CoV-2 antibodies quantified serologically. The primary outcome is intubation or death at day 30. Secondary outcomes include ventilator-free days, length of stay in intensive care or hospital, transfusion reactions, serious adverse events, and reduction in SARS-CoV-2 viral load. Exploratory analyses include patients who received CCP containing high titre antibodies. A sample size of 1200 patients gives 80% power to detect a 25% relative risk reduction assuming a 30% baseline risk of intubation or death at 30 days (two-sided test; α = 0.05). An interim analysis and sample size re-estimation will be done by an unblinded independent biostatistician after primary outcome data are available for 50% of the target recruitment (n = 600). DISCUSSION: This trial will determine whether CCP will reduce intubation or death non-intubated adults with COVID-19. The trial will also provide information on the role of and thresholds for SARS-CoV-2 antibody titres and neutralization assays for donor qualification. TRIAL REGISTRATION: Clinicaltrials.gov NCT04348656 . Registered on 16 April 2020.


Subject(s)
COVID-19 , Coronavirus Infections , Adult , Bisoprolol , COVID-19/therapy , Humans , Immunization, Passive , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
15.
Acad Pathol ; 8: 23742895211006818, 2021.
Article in English | MEDLINE | ID: covidwho-1225750

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, created an unprecedented need for comprehensive laboratory testing of populations, in order to meet the needs of medical practice and to guide the management and functioning of our society. With the greater New York metropolitan area as an epicenter of this pandemic beginning in March 2020, a consortium of laboratory leaders from the assembled New York academic medical institutions was formed to help identify and solve the challenges of deploying testing. This report brings forward the experience of this consortium, based on the real-world challenges which we encountered in testing patients and in supporting the recovery effort to reestablish the health care workplace. In coordination with the Greater New York Hospital Association and with the public health laboratory of New York State, this consortium communicated with state leadership to help inform public decision-making addressing the crisis. Through the length of the pandemic, the consortium has been a critical mechanism for sharing experience and best practices in dealing with issues including the following: instrument platforms, sample sources, test performance, pre- and post-analytical issues, supply chain, institutional testing capacity, pooled testing, biospecimen science, and research. The consortium also has been a mechanism for staying abreast of state and municipal policies and initiatives, and their impact on institutional and laboratory operations. The experience of this consortium may be of value to current and future laboratory professionals and policy-makers alike, in dealing with major events that impact regional laboratory services.

16.
Clin Chem ; 67(9): 1249-1258, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1207270

ABSTRACT

BACKGROUND: Low initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers dropping to undetectable levels within months after infection have raised concerns about long-term immunity. Both the antibody levels and the avidity of the antibody-antigen interaction should be examined to understand the quality of the antibody response. METHODS: A testing-on-a-probe "plus" panel (TOP-Plus) was developed to include a newly developed avidity assay built into the previously described SARS-CoV-2 TOP assays that measured total antibody (TAb), surrogate neutralizing antibody (SNAb), IgM, and IgG on a versatile biosensor platform. TAb and SNAb levels were compared with avidity in previously infected individuals at 1.3 and 6.2 months after infection in paired samples from 80 patients with coronavirus disease 2019 (COVID-19). Sera from individuals vaccinated for SARS-CoV-2 were also evaluated for antibody avidity. RESULTS: The newly designed avidity assay in this TOP panel correlated well with a reference Bio-Layer Interferometry avidity assay (r = 0.88). The imprecision of the TOP avidity assay was <10%. Although TAb and neutralization activity (by SNAb) decreased between 1.3 and 6.2 months after infection, the antibody avidity increased significantly (P < 0.0001). Antibody avidity in 10 SARS-CoV-2 vaccinated individuals (median: 28 days after vaccination) was comparable to the measured antibody avidity in infected individuals (median: 26 days after infection). CONCLUSIONS: This highly precise and versatile TOP-Plus panel with the ability to measure SARS-CoV-2 TAb, SNAb, IgG, and IgM antibody levels and avidity of individual sera on one sensor can become a valuable asset in monitoring not only patients infected with SARS-CoV-2 but also the status of individuals' COVID-19 vaccination response.


Subject(s)
Antibodies, Viral/blood , Antibody Affinity/physiology , Biosensing Techniques/methods , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Interferometry , Male , Middle Aged , SARS-CoV-2/isolation & purification , Time Factors , Young Adult
17.
J Clin Endocrinol Metab ; 106(5): e2025-e2034, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1199961

ABSTRACT

PURPOSE: Comorbidities making up metabolic syndrome (MetS), such as obesity, type 2 diabetes, and chronic cardiovascular disease can lead to increased risk of coronavirus disease-2019 (COVID-19) with a higher morbidity and mortality. SARS-CoV-2 antibodies are higher in severely or critically ill COVID-19 patients, but studies have not focused on levels in convalescent patients with MetS, which this study aimed to assess. METHODS: This retrospective study focused on adult convalescent outpatients with SARS-CoV-2 positive serology during the COVID-19 pandemic at NewYork Presbyterian/Weill Cornell. Data collected for descriptive and correlative analysis included SARS-COV-2 immunoglobin G (IgG) levels and history of MetS comorbidities from April 17, 2020 to May 20, 2020. Additional data, including SARS-CoV-2 IgG levels, body mass index (BMI), hemoglobin A1c (HbA1c) and lipid levels were collected and analyzed for a second cohort from May 21, 2020 to June 21, 2020. SARS-CoV-2 neutralizing antibodies were measured in a subset of the study cohort. RESULTS: SARS-CoV-2 IgG levels were significantly higher in convalescent individuals with MetS comorbidities. When adjusted for age, sex, race, and time duration from symptom onset to testing, increased SARS-CoV-2 IgG levels remained significantly associated with obesity (P < 0.0001). SARS-CoV-2 IgG levels were significantly higher in patients with HbA1c ≥6.5% compared to those with HbA1c <5.7% (P = 0.0197) and remained significant on multivariable analysis (P = 0.0104). A positive correlation was noted between BMI and antibody levels [95% confidence interval: 0.37 (0.20-0.52) P < 0.0001]. Neutralizing antibody titers were higher in COVID-19 individuals with BMI ≥ 30 (P = 0.0055). CONCLUSION: Postconvalescent SARS-CoV-2 IgG and neutralizing antibodies are elevated in obese patients, and a positive correlation exists between BMI and antibody levels.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Metabolic Syndrome/immunology , Adult , Antibodies, Neutralizing/blood , COVID-19/blood , COVID-19/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/virology , Female , Humans , Immunoglobulin G/blood , Male , Metabolic Syndrome/blood , Metabolic Syndrome/virology , Middle Aged , Obesity/blood , Obesity/immunology , Obesity/virology , Retrospective Studies
18.
Cell ; 184(10): 2595-2604.e13, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1163482

ABSTRACT

The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases associated with this variant have been detected in the United States (US) since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.


Subject(s)
COVID-19 Testing , COVID-19 , Models, Biological , SARS-CoV-2 , COVID-19/genetics , COVID-19/mortality , COVID-19/transmission , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , United States/epidemiology
19.
JAMA Netw Open ; 4(3): e214302, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1144219

ABSTRACT

Importance: Accumulating evidence suggests that children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more likely to manifest mild symptoms and are at a lower risk of developing severe respiratory disease compared with adults. It remains unknown how the immune response in children differs from that of adolescents and adults. Objective: To investigate the association of age with the quantity and quality of SARS-CoV-2 antibody responses. Design, Setting, and Participants: This cross-sectional study used 31 426 SARS-CoV-2 antibody test results from pediatric and adult patients. Data were collected from a New York City hospital from April 9 to August 31, 2020. The semiquantitative immunoglobin (Ig) G levels were compared between 85 pediatric and 3648 adult patients. Further analysis of SARS-CoV-2 antibody profiles was performed on sera from 126 patients aged 1 to 24 years. Main Outcomes and Measures: SARS-CoV-2 antibody positivity rates and IgG levels were evaluated in patients from a wide range of age groups (1-102 years). SARS-CoV-2 IgG level, total antibody (TAb) level, surrogate neutralizing antibody (SNAb) activity, and antibody binding avidity were compared between children (aged 1-10 years), adolescents (aged 11-18 years), and young adults (aged 19-24 years). Results: Among 31 426 antibody test results (19 797 [63.0%] female patients), with 1194 pediatric patients (mean [SD] age, 11.0 [5.3] years) and 30 232 adult patients (mean [SD] age, 49.2 [17.1] years), the seroprevalence in the pediatric (197 [16.5%; 95% CI, 14.4%-18.7%]) and adult (5630 [18.6%; 95% CI, 18.2%-19.1%]) patient populations was similar. The SARS-CoV-2 IgG level showed a negative correlation with age in the pediatric population (r = -0.45, P < .001) and a moderate but positive correlation with age in adults (r = 0.24, P < .001). Patients aged 19 to 30 years exhibited the lowest IgG levels (eg, aged 25-30 years vs 1-10 years: 99 [44-180] relative fluorescence units [RFU] vs 443 [188-851] RFU). In the subset cohort aged 1 to 24 years, IgG, TAb, SNAb and avidity were negatively correlated with age (eg, IgG: r = -0.51; P < .001). Children exhibited higher median (IQR) IgG levels, TAb levels, and SNAb activity compared with adolescents (eg, IgG levels: 473 [233-656] RFU vs 191 [82-349] RFU; P < .001) and young adults (eg, IgG levels: 473 [233-656] RFU vs 85 [38-150] RFU; P < .001). Adolescents also exhibited higher median (IQR) TAb levels, IgG levels, and SNAb activity than young adults (eg, TAb levels: 961 [290-2074] RFU vs 370 [125-697]; P = .006). In addition, children had higher antibody binding avidity compared with young adults, but the difference was not significant. Conclusions and Relevance: The results of this study suggest that SARS-CoV-2 viral specific antibody response profiles are distinct in different age groups. Age-targeted strategies for disease screening and management as well as vaccine development may be warranted.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Affinity/immunology , Antibody Formation/immunology , COVID-19 , SARS-CoV-2 , Age Factors , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , Child , Correlation of Data , Cross-Sectional Studies , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , New York City/epidemiology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
20.
J Mol Diagn ; 23(2): 149-158, 2021 02.
Article in English | MEDLINE | ID: covidwho-1056932

ABSTRACT

An epidemic caused by an outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China in December 2019 has since rapidly spread internationally, requiring urgent response from the clinical diagnostics community. We present a detailed overview of the clinical validation and implementation of the first laboratory-developed real-time RT-PCR test offered in the NewYork-Presbyterian Hospital system following the Emergency Use Authorization issued by the US Food and Drug Administration. Nasopharyngeal and sputum specimens (n = 174) were validated using newly designed dual-target real-time RT-PCR (altona RealStar SARS-CoV-2 Reagent) for detecting SARS-CoV-2 in upper respiratory tract and lower respiratory tract specimens. Accuracy testing demonstrated excellent assay agreement between expected and observed values and comparable diagnostic performance to reference tests. The limit of detection was 2.7 and 23.0 gene copies per reaction for nasopharyngeal and sputum specimens, respectively. Retrospective analysis of 1694 upper respiratory tract specimens from 1571 patients revealed increased positivity in older patients and males compared with females, and an increasing positivity rate from approximately 20% at the start of testing to 50% at the end of testing 3 weeks later. Herein, we demonstrate that the assay accurately and sensitively identifies SARS-CoV-2 in multiple specimen types in the clinical setting and summarize clinical data from early in the epidemic in New York City.


Subject(s)
Academies and Institutes , COVID-19 Testing , COVID-19/diagnosis , COVID-19/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Biological Assay , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Limit of Detection , Male , Middle Aged , Nasopharynx/virology , Reproducibility of Results , Sensitivity and Specificity , Sputum/virology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL